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Abstract
The compressibility of solid helium (3He and 4He) in the hcp and fcc phases has been studied by
the path-integral Monte Carlo method. Simulations were carried out in both canonical (NV T )
and isothermal–isobaric (N PT ) ensembles at temperatures between 10 and 300 K, showing
consistent results in both ensembles. For pressures between 4 and 10 GPa, the bulk modulus B
is found to decrease by about 10%, when the temperature increases from the low-temperature
limit to the melting temperature. The isotopic effect on the bulk modulus of helium crystals has
been quantified for a wide range of parameters. At 25 K and pressures on the order of 1 GPa,
the relative difference between 3He and 4He amounts to about 2%. The thermal expansion has
also been quantified from results obtained in both N PT and NV T simulations.

1. Introduction

In the last decades there has been continuous progress in the
study of different types of substances under extreme conditions
of pressure and temperature, thus enlarging appreciably the
experimentally accessible region of phase diagrams [1]. In
particular, the influence of controlled hydrostatic pressure on
the structural, thermodynamic, and electronic properties of
various kinds of solids has been intensively studied. Pressures
on the order of tens of GPa can now be routinely applied to real
materials [2–5].

Solid helium, in spite of having been studied for many
years, has a broad interest in condensed matter physics because
of its peculiar character as a ‘quantum solid’. In particular,
its zero-point vibrational energy and associated anharmonic
effects are markedly larger than in most known solids [6].
In addition, its electronic simplicity allows one to carry out
detailed studies, that would be enormously difficult for other
materials [7–9]. The interest on the behaviour of solids under
high pressures has also been focused on solid helium. Thus,
diamond-anvil-cell and shock-wave experiments have allowed
the study of the equation of state (EOS) of solid 4He up to
pressures on the order of 50 GPa [2, 10, 11]. In recent years,
the effect of pressure on heavier rare-gas solids has also been of
interest for both experimentalists [4, 12] and theorists [13–16].

The Feynman path-integral formulation of statistical me-
chanics [17, 18] is well suited to studying the thermodynamic
properties of solids at temperatures lower than their Debye
temperature �D, where the quantum character of the atomic
nuclei becomes important. In particular, the combination
of path integrals with computer simulation methods, such as
Monte Carlo or molecular dynamics, has been revealed as a

powerful technique to carry out quantitative and nonperturba-
tive studies of many-body quantum systems at finite tempera-
tures. This has allowed the study of several properties of solids
further than the usual harmonic or quasiharmonic approxima-
tions [7].

The path-integral Monte Carlo (PIMC) method has been
used to study several properties of solid helium [7, 19–24],
as well as heavier rare-gas solids [25–30]. For helium, in
particular, this method has predicted kinetic-energy values [19]
and Debye–Waller factors [31] in good agreement with data
derived from experiments [32, 33]. PIMC simulations have
been also employed to study the isotopic shift in the helium
melting curve [20, 21]. The EOS of solid helium at T = 0
has been studied by diffusion Monte Carlo in a wide density
range [9, 34], as well as at finite temperatures by using PIMC
simulations with several interatomic potentials [22].

In recent years, there has been a debate on the existence of
supersolidity in 4He at temperatures lower than 1 K [35–38].
This debate is still open, but is out of the scope of this paper,
since we consider here solid helium at temperatures higher than
10 K, where quantum exchange effects between atomic nuclei
are not relevant.

In this paper, we study the compressibility of solid 3He and
4He by PIMC simulations. We employ the isothermal–isobaric
(N PT ) ensemble, which allows us to consider properties of
these solids along well-defined isobars. For comparison, we
also present results of PIMC simulations in the canonical
(NV T ) ensemble. By comparing results for 3He and 4He, we
analyse isotopic effects on the compressibility as a function of
pressure.

The paper is organized as follows. In section 2, the
computational method is described. In section 3 we present
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and discuss the results, divided into several subsections dealing
with the thermodynamic consistency, pressure and temperature
dependence of the bulk modulus, isotopic effects, and thermal
expansion. Finally, in section 4 we present the conclusions.

2. Method

Equilibrium properties of solid 3He and 4He in the face-
centred cubic (fcc) and hexagonal close-packed (hcp) phases
have been calculated by PIMC simulations. The PIMC
method relies on an isomorphism between the quantum system
under consideration and a fictitious classical one, obtained
by replacing each quantum particle by a cyclic chain of Q
classical particles (Q: Trotter number), connected by harmonic
springs with a temperature-dependent force constant. This
isomorphism appears as a consequence of discretizing the
density matrix along cyclic paths, which is usual in the path-
integral formulation of statistical mechanics [17, 18]. Details
of this computational method are given elsewhere [7, 39–41].

Helium atoms were considered as quantum particles inter-
acting through an effective interatomic potential, composed of
a two-body and a three-body part. For the two-body interac-
tion, we employed the potential developed by Aziz et al [42]
(the so-called HFD-B3-FCI1 potential). For the three-body
part we took a Bruch–McGee-type potential [43, 44], with the
parameters given by Loubeyre [44], but with parameter A in
the attractive exchange interaction rescaled by a factor 2/3, as
suggested in [21]. This interatomic potential was found earlier
to describe well the vibrational energy and equation-of-state
of solid helium over a broad range of pressures and tempera-
tures [23].

Our simulations were based on the so-called ‘primitive’
form of PIMC [39, 45]. We considered two- and three-body
terms explicitly in the simulations. The actual consideration of
three-body terms did not allow us to use effective forms for
the density matrix; these forms were developed to simplify
the calculation when only two-body terms are explicitly
considered [21]. Quantum exchange effects between atomic
nuclei were not taken into account, because they are negligible
for solid helium at the temperatures and pressures studied
here. (This is expected to be valid assuming the absence
of vacancies and for temperatures higher than the exchange
frequency ∼10−6 K [7].) To calculate the energy we have used
the ‘crude’ estimator, as defined in [39, 45].

We have employed both the canonical (NV T ) ensemble
and the isothermal–isobaric (N PT ) ensemble. Our
simulations were performed on supercells of the fcc and hcp
unit cells, including 500 and 432 helium atoms respectively.
To check the convergence of our results with system size, we
carried out some simulations for other supercell sizes, and
found that finite-size effects for N > 400 atoms are negligible
for the quantities studied here. In particular, changes of the
bulk modulus with the size of the simulation cell were found
to be smaller than the statistical error bar of the values derived
from our simulations.

Sampling of the configuration space was carried out by
the Metropolis method at temperatures between 12 K and the
melting temperature at each considered pressure. For given

temperature and pressure, a typical run consisted of 104 Monte
Carlo steps for system equilibration, followed by 4 × 105 steps
for the calculation of ensemble average properties. Each step
included attempts to move every replica of every atom in the
simulation cell. In the N PT simulations, it also included an
attempt to change the volume. To keep the accuracy of the
computed quantities roughly constant at different temperatures,
we took a Trotter number Q proportional to the inverse
temperature, so that QT = 3000 K. This means that for solid
helium at T = 20 K we had Q = 150, and a PIMC simulation
for N = 500 atoms effectively includes 75000 ‘classical’
particles. More technical details are given in [23, 29, 46].

In the NV T ensemble the pressure and isothermal bulk
modulus B = −V (∂ P/∂V )T can be obtained from thermal
averages of various quantities obtained in PIMC simulations,
as shown in appendix A. The derivation is straightforward
from the partition function Z N V T for N quantum particles in
the canonical ensemble, but is rather tedious in the case of
the bulk modulus, due to the number of terms appearing in
the volume derivatives. In particular, B can be obtained from
equations (A.11) and (A.12) in appendix A. In the N PT
ensemble, the isothermal bulk modulus is related to the mean-
square fluctuations of the volume V of the simulation cell by
the expression:

σ 2
V = V

B
kBT, (1)

as shown in appendix B.

3. Results and discussion

3.1. Consistency checks

We have calculated the bulk modulus in the N PT and NV T
ensembles. In general, we prefer the isothermal–isobaric
ensemble, so that we can study solids along well-defined
isotherms. NV T simulations are, however, frequently used
in PIMC simulations [7, 19, 31], and a comparison of results
obtained in both ensembles seems necessary as a consistency
check of the method, and in particular for the case of solid
helium.

We first discuss results obtained in the N PT ensemble.
At constant pressure, the relative fluctuations in the volume,
σV /V , can be found from equation (1):

σV

V
=

(
kBT

BV

) 1
2

. (2)

For hcp 4He at 25 K we found in PIMC simulations σV /V =
2.9 ×10−3 for P = 2 GPa, and a lower value of 1.4 ×10−3 for
20 GPa (for a simulation cell including N = 432 atoms). This
means that the product BV increases as the pressure is raised
(see equation (2)), in spite of the reduction of V , indicating
that the growth of bulk modulus with pressure dominates in
the product BV (see below).

For a cubic crystal, the fluctuations in the lattice parameter
a can be derived from equation (1) to give:

σ 2
a = kBT

9L3a B
, (3)
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Figure 1. Relative fluctuation of the lattice parameter, σa/a, of fcc
4He versus L−3/2, for simulation cells of lateral size La. Shown are
results of PIMC simulations for two pressures (2 and 7 GPa) at
T = 100 K, and for L = 3, 4, 5, and 7. Error bars are less than the
symbol size.

where L3 is the number of cubic unit cells in a simulation
cell with side length La. From equation (3) one can see that
the relative fluctuation in the lattice parameter, σa/a, scales as
L−3/2. This normalized fluctuation for fcc 4He is displayed in
figure 1 as a function of L−3/2. Shown are results of PIMC
simulations in the N PT ensemble at T = 100 K and two
pressures: 2 and 7 GPa. The linear dependence shown in this
figure agrees with the dependence of σa on the simulation-
cell size given by equation (3). The different slopes of these
lines are basically due to the change of compressibility with
pressure.

To check the thermodynamic consistency of our simula-
tions in both N PT and NV T ensembles we have carried out
several tests. The first obvious test consists in taking the crys-
tal volume derived from isothermal–isobaric simulations, and
using it as an input in NV T simulations at the same temper-
ature. The latter should give the same pressure (using equa-
tion (A.7)) as that used earlier in the N PT simulations. As an
example, for fcc 4He at 25 K and 1 GPa, we find first a lat-
tice parameter a = 3.6955 Å, that introduced as an input in
NV T simulations yields a pressure of 1.0002(5) GPa, in good
agreement with the input in the previous N PT simulations.
Going on with the same set of parameters, we can also check
the consistency of the bulk modulus B derived from both types
of simulations. At constant pressure (P = 1 GPa), we find
BN PT = 4.50(2) GPa from the volume fluctuations (see equa-
tion (B.5) in appendix B) versus BN V T = 4.47(2) GPa derived
at constant volume by using expressions (A.11) and (A.12).

3.2. Pressure and temperature dependence

We now consider the pressure dependence of the bulk modulus,
as derived from our PIMC simulations. This is shown in
figure 2 for 4He at three temperatures. In this figure, T
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Figure 2. Isothermal bulk modulus of solid 4He as a function of
pressure at three temperatures: 25 K (squares), 150 K (circles), and
300 K (triangles). Open and filled symbols correspond to hcp and fcc
helium, respectively. Error bars are smaller than the symbol size.
Dashed lines are fits to the data points using the expression:
B = B0 + B ′

0 P + 1
2 B ′′

0 P2.

decreases from top to bottom: T = 25, 150, and 300 K;
open and filled symbols correspond to hcp and fcc helium,
respectively. At each considered temperature, we present
data for the pressure region where the solid was stable (or
metastable) along the PIMC simulations, a region that becomes
broader as the temperature is lowered. In addition to the typical
rise of B for increasing pressure, we find that for a given
pressure, B decreases as the temperature is raised. In the
pressure range shown in figure 2 one also observes a departure
from linearity in the dependence of B on pressure. By fitting
these results to the expression B = B0 + B ′

0 P + 1
2 B ′′

0 P2, we
can find the pressure derivatives at P = 0 (B ′

0 and B ′′
0 ). Thus,

for T = 25 K we obtain B0 = 0.47 GPa, B ′
0 = 4.01, and

B ′′
0 = −0.068 GPa−1.

For the other temperatures shown in figure 2 (T = 150
and 300 K), an extrapolation of the results to P = 0 yields
negative values of B0, indicating that the solid is mechanically
unstable at these temperatures for low pressures. At 25 K and
zero pressure, even though the liquid is known to be the stable
phase, the solid can still be metastable, as it has not yet reached
the limit of mechanical stability, or the spinodal line. Apart
from this, the curves B(P) at the considered temperatures are
rather parallel one to the other in the common stability region.

It is interesting to compare the bulk modulus obtained here
for solid helium with those of heavier rare-gas solids at the
same conditions. For example, at T = 20 K and P = 1 GPa,
we find for solid 4He: B = 4.53 GPa, versus 7.20 and 9.43 for
Ne and Ar, respectively [30]. This is in line with the known
result that the bulk modulus increases with atomic mass for
given values of temperature and pressure [30].

Rare-gas solids have been studied in metastable condi-
tions, even at negative pressures [47]. They have been found to
be metastable in PIMC simulations close to the spinodal point,
defined as the point at which the compressibility κ = 1/B

3
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Figure 3. Isothermal bulk modulus of solid 4He as a function of
temperature at three hydrostatic pressures: 4 GPa (squares), 7 GPa
(circles), and 10 GPa (triangles). Open and filled symbols correspond
to hcp and fcc helium, respectively. Error bars of the simulation
results are on the order of the symbol size. Dashed lines are guides
to the eye.

diverges (or the bulk modulus vanishes). Thus, for solid Ne
and Ar at 5 K, the spinodal point was found at P = −91 and
−245 MPa. For solid helium, we could not approach the spin-
odal point at any temperature, due to the large quantum fluctu-
ations that make the solid unstable along the simulations. This
happened even at zero pressure and relatively low temperature,
in spite of the fact that the expected bulk modulus at these con-
ditions is still far from vanishing. For example, at 25 K we find
for solid helium B0 = 0.47 GPa, as derived from extrapolation
of the results obtained at P > 0.2 GPa (see above and figure 2),
but the solid was unstable in our simulations at P < 0.2 GPa.

The temperature dependence of the bulk modulus is
displayed in figure 3 for three different pressures. Here
again open and filled symbols indicate hcp and fcc helium,
respectively. For each pressure under consideration, the plotted
data correspond to the temperature region where we found the
solids to be (meta)stable along the PIMC simulations. For
each pressure, the bulk modulus decreases as the temperature
is raised, and this decrease is similar for different pressures. In
fact, the obtained curves B(T ) are parallel within the statistical
error of our simulations. In the whole accessible temperature
range, the bulk modulus decreases by 2.1, 2.6, and 3.1 GPa, for
P = 4, 7, and 10 GPa, respectively. These values amount to
13.0, 9.8, and 8.5% of the corresponding bulk modulus at 25 K.

To connect with data derived from experiment, we note
that Zha et al [48] have obtained the bulk modulus of solid 4He
from Brillouin scattering measurements. From these results,
they derived the dependence of the isothermal bulk modulus
upon material density at 300 K. In figure 4 we present results
of our PIMC simulations for 4He at 300 K (open squares) along
with those derived from Brillouin scattering experiments at
room temperature (solid line). At this temperature, the density
region between 0.95 and 1.25 g cm−3 corresponds to a pressure
between 12 and 29 GPa. At ρ < 1 g cm−3, our results coincide

Figure 4. Isothermal bulk modulus of solid 4He versus density. Open
squares represent results of path-integral Monte Carlo simulations in
the N PT ensemble. Error bars are less than the symbol size. A solid
line indicates the bulk modulus derived by Zha et al [48] from
Brillouin scattering experiments. The dashed line is a guide
to the eye.

within error bars with those derived from Brillouin scattering,
and at higher densities the bulk modulus derived from PIMC
simulations is somewhat larger. For example, at density ρ = 1
and 1.25 g cm−3, Zha et al [48] obtained B = 42.1 and
79.9 GPa respectively, to be compared with B = 44 and
86 GPa yielded by our PIMC simulations of 4He at the same
densities and T = 300 K. This means that at ρ = 1.25 g cm−3,
the difference amounts to about 7%.

3.3. Isotopic effect

An interesting point in this context is the influence of the
atomic mass on the solid compressibility. This isotopic effect
can be readily obtained from PIMC simulations, since the mass
is an input parameter in these calculations. Similar isotopic
effects have been studied earlier for the melting curve [20, 21]
and molar volume [23, 24] of solid helium. For a given
material, lighter isotopes form more compressible solids, as
a consequence of an increase in the molar volume. This
is in fact due to a combination of the anharmonicity in the
interatomic potential and zero-point vibrations, which are most
important at low temperature. Since these quantum vibrations
are especially large in the case of helium, due to its low
mass, the isotopic effect on the bulk modulus is expected to
be appreciable.

Thus, one expects the bulk modulus of solid 4He to be
larger than that of 3He. This is in fact the case, as derived from
our PIMC simulations. In figure 5 we display the difference
�B = B4 − B3 as a function of pressure at T = 25 K.
For example, at 1 GPa and 25 K we find B = 4.40 and
4.50 ± 0.01 GPa for 3He and 4He, respectively, and the
difference between both isotopes amounts to 2.2%. At the
same temperature and 7 GPa, we obtained B = 26.20 and
26.59 GPa, which translates to a relative difference of 1.5%.
This relative change in bulk modulus associated to the isotopic

4



J. Phys.: Condens. Matter 20 (2008) 295230 C P Herrero

Figure 5. Isotopic effect on the isothermal bulk modulus as a
function of pressure. Shown is the difference �B = B4 − B3

between the bulk modulus of 4He and 3He at 25 K. Filled and open
symbols represent data for fcc and hcp helium, respectively.

mass is appreciable, and slightly larger than that found for the
isotopic effect on the molar volume of helium crystals. Thus,
at a pressure of 1 and 7 GPa and T = 25 K, we find a volume
difference of 1.8 and 0.9%, when comparing 3He and 4He [24].
In general, given a temperature, the relative changes in volume
and compressibility decrease for increasing pressure, since the
solid behaves as if it was ‘more classical’ [30, 49], and isotopic
effects (of quantum origin) are consequently reduced.

3.4. Thermal expansion

At this point, it is worthwhile comparing the temperature
dependence of the bulk modulus obtained at fixed volume and
fixed pressure, from PIMC simulations in the NV T and N PT
ensembles, respectively. In figure 6 we have plotted our results
for B , as derived in both cases. On one side, the simulations
in the isothermal–isobaric ensemble were carried out at a
pressure P = 1 GPa, and the results obtained are represented
in figure 6 as circles. On the other side, simulations in the
canonical ensemble (at various temperatures) were performed
for the volume obtained in N PT simulations at T = 25 K
and P = 1 GPa. Results of these NV T simulations are
displayed as open squares. As expected, B obtained in both
types of simulations agree with each other (within error bars) at
T � 25 K. At higher temperatures, the N PT simulations yield
values of the bulk modulus smaller than those derived from
NV T simulations. This is due to the thermal expansion, that is
taken into account in the simulations at constant pressure, but
is neglected in the constant-volume simulations. In general,
an increase in crystal volume causes a decrease in the bulk
modulus.

In this context, another application of our PIMC
simulations consists in the calculation of the thermal expansion
coefficient

α = 1

V

(
∂V

∂T

)
P

, (4)

Figure 6. Bulk modulus versus temperature, as derived from PIMC
simulations at constant volume (squares) and constant pressure
(circles). The simulations in the NV T ensemble were carried out
with the volume obtained at P = 1 GPa and T = 25 K. Lines are
guides to the eye.

which can be obtained in the canonical ensemble by using the
expression [50]:

α = 1

B

(
∂ P

∂T

)
V

. (5)

This equation in fact relates the thermal expansion with
the compressibility through the temperature derivative of the
pressure at constant volume. In connection with equation (5),
we note that the pressure obtained in NV T simulations (with
a fixed lattice parameter a = 3.6955 Å) increases from 1
to 1.3 GPa when the temperature rises from 25 to 75 K. At
25 K, we have B = 4.46 GPa and (∂ P/∂T )V = 8.87 ×
10−4 GPa K−1, giving αN V T = 1.99×10−4 K−1. This result is
in agreement with that found directly from the volume change
obtained in the N PT simulations, which yields αN PT =
2.03 × 10−4 K−1.

Finally, in figure 7 we present results of the thermal
expansion coefficient α yielded by our simulations in the
isothermal–isobaric ensemble at two (high) pressures. We give
values for both 3He and 4He in the hcp phase. First, we observe
an important decrease in α as the pressure is raised. For 4He
at 300 K, we find a reduction in α by a factor of five, when
increasing P from 12 to 52 GPa. Second, we note that the
thermal expansion is smaller for 3He than for 4He. This is easy
to understand, since the molar volume of solid 3He is larger
than that of 4He [23], and both volumes have to converge one
to the other in the high-temperature (classical) limit.

4. Conclusions

Path-integral Monte Carlo simulations in both NV T and N PT
ensembles have been shown to be well suited to analyse the
temperature and pressure dependence of the bulk modulus of
solid helium. In the isothermal–isobaric ensemble, B can
be derived from the volume fluctuations along a simulation
run. In the canonical ensemble, a calculation of B is more

5
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Figure 7. Temperature dependence of the thermal expansion
coefficient α of hcp helium, as derived from PIMC simulations at
P = 12 and 52 GPa. Open and filled symbols correspond to 3He and
4He, respectively. Error bars are on the order of the symbol size.
Dashed lines are guides to the eye.

elaborate, but can be carried out from thermal averages of
various intermediate quantities obtained in PIMC simulations.
Both ensembles NV T and N PT give consistent results for the
compressibility and thermal expansion of 3He and 4He in the
whole region of temperatures and pressures considered here.

At a given pressure, the bulk modulus decreases as
temperature rises. For pressures between 4 and 10 GPa, the
change in B has been found to be on the order of 10%, when
temperature increases from the low-T limit to the melting
temperature of the material.

Solid 3He is more compressible than 4He. At a given
T , the difference between the bulk modulus of both solids
increases as pressure rises, but the relative difference between
them decreases. This isotopic effect on the compressibility of
solid helium is appreciable in the range of temperatures and
pressures studied here. In fact, at 25 K and pressures on the
order of 1 GPa, it amounts to about 2%.

Apart from a precise calculation of the bulk modulus,
PIMC simulations in the canonical ensemble can be also used
to study accurately the thermal expansion of the solids under
consideration at a given pressure.
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Appendix A. Pressure and bulk modulus in the
NV T ensemble

A.1. Pressure

In the path-integral formalism, the canonical partition function
for N identical quantum particles obeying Boltzmann statistics

(no particle exchange) can be written as [39, 40]:

Z N V T = K
∫ N∏

i=1

Q∏
j=1

dri j exp

(
−β

Q∑
j=1

[
C

N∑
i=1

(ri, j+1 − ri j )
2

+ 1

Q

(r1 j , . . . , rN j )

])
, (A.1)

where ri j (i = 1, . . . , N; j = 1, . . . , Q) are Cartesian
coordinates of the N particles at imaginary time j , β =
(kBT )−1, and 
(r1 j , . . . , rN j ) is the potential energy. We have
defined

K = 1

N !
(

m Q

2πβh̄2

)3N Q/2

(A.2)

and

C = m Q

2β2h̄2
. (A.3)

The coordinates are subject to the cyclic condition ri,Q+1 = ri1

for all particles i = 1, . . . , N . Changing ri j to reduced
coordinates si j = V −1/3ri j , we find:

Z N V T = K V N Q
∫ N∏

i=1

Q∏
j=1

dsi j exp
[−β H (β, V , {si j})

]
,

(A.4)
where we have defined

H (β, V , {si j}) = CV 2/3
N∑

i=1

Q∑
j=1

(si, j+1 − si j)
2

+ 1

Q

Q∑
j=1


(V 1/3s1 j , . . . , V 1/3sN j ) (A.5)

and the dependence of H on β , V , and the coordinates si j has
been explicitly indicated.

The pressure is given by

P = 1

β

1

Z N V T

∂ Z N V T

∂V
, (A.6)

and from the volume derivative of Z N V T one finds:

P = N Q

βV
− 2

3V
〈Eh〉 − 〈
V 〉 (A.7)

where Eh refers to the ‘harmonic’ energy:

Eh = C
N∑

i=1

Q∑
j=1

(ri, j+1 − ri j )
2 = CV 2/3

N∑
i=1

Q∑
j=1

(si, j+1 − si j)
2

(A.8)
and


V = 1

Q

Q∑
j=1

∂
(V 1/3s1 j , . . . , V 1/3sN j )

∂V
. (A.9)

A.2. Bulk modulus

The isothermal bulk modulus is:

B = −V

(
∂ P

∂V

)
T

(A.10)

6
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and substituting equation (A.6) for the pressure, we have:

B = Vβ P2 − V

β Z N V T

∂2 Z N V T

∂V 2
. (A.11)

Taking a second volume derivative of Z N V T , we find:

1

β Z N V T

∂2 Z N V T

∂V 2
= N Q(N Q − 1)

βV 2

+ 1

3V 2

(
2

3
− 4N Q

)
〈Eh〉 − 2N Q

V
〈
V 〉 + 4

9

β

V 2
〈E2

h〉

+ 4

3

β

V
〈Eh
V 〉 − 1

Q

〈
∂
V

∂V

〉
+ β〈
2

V 〉. (A.12)

Finally, equations (A.11) and (A.12) give us the bulk modulus
B at volume V and temperature T .

Appendix B. Compressibility in the NPT ensemble

We now have the partition function

Z N PT =
∫ ∞

0
dV e−β P V Z N V T . (B.1)

To obtain the compressibility, we calculate the pressure
derivatives of ln Z N PT . We find:

∂ ln Z N PT

∂ P
= 1

Z N PT

∂ Z N PT

∂ P
= −β〈V 〉 (B.2)

and

∂2 ln Z N PT

∂ P2
= − 1

Z 2
N PT

(
∂ Z N PT

∂ P

)2

+ 1

Z N PT

∂2 Z N PT

∂ P2

= −β2〈V 〉2 + β2〈V 2〉 = −β2σ 2
V , (B.3)

where σ 2
V is the mean-square fluctuation of the volume.

Moreover, from equation (B.2):

∂2 ln Z N PT

∂ P2
= −β

∂〈V 〉
∂ P

, (B.4)

and from equations (B.3) and (B.4), we obtain for the
isothermal compressibility κ :

κ = − 1

〈V 〉
(

∂〈V 〉
∂ P

)
T

= βσ 2
V

〈V 〉 . (B.5)

This is the thermodynamic relation obtained in general in the
isothermal–isobaric ensemble [51]. Thus, it can be directly
used to obtain the compressibility from the volume fluctuations
in path-integral simulations, without any further calculations.
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